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Many, but not all, observational epidemiological studies of ozone ( O3 ) air pollution have yielded significant associations between variations in daily ambient

concentrations of this pollutant and a wide range of adverse health outcomes. We evaluate some past epidemiological studies that have assessed the short - term

association of O3 with mortality, and investigate one possible reason for variations in their O3 effect estimate, i.e., differences in their approaches to the

modeling of weather influences on mortality. For all of the total mortality± air pollution time - series studies considered, the combined analysis yielded a relative

risk, RR =1.036 per 100 - ppb increase in daily 1 - h maximum O3 ( 95% CI: 1.023±1.050). However, the subset of studies that specified the nonlinear nature of

the temperature± mortality association yielded a combined estimate of RR =1.056 per 100 ppb ( 95% CI: 1.032±1.081). This indicates that past time- series

studies using linear temperature± mortality specifications have underpredicted the premature mortality effects of O3 air pollution. For Detroit, MI, an

illustrative analysis of daily total mortality during 1986±1990 also indicated that the model weather specification choice can influence the O3 health effects

estimate. Results were intercompared for alternative weather specifications. Nonlinear specifications of temperature and relative humidity (RH ) yielded lower

intercorrelations with the O3 coefficient, and larger O3 RR estimates, than a base model employing a simple linear spline of hot and cold temperature. We

conclude that, unlike for particulate matter ( PM) mass, the mortality effect estimates derived by time - series analyses for O3 can be sensitive to the way that

weather is addressed in the model. The same may well also be true for other pollutants with largely temperature -dependent formation mechanisms, such as

secondary aerosols. Generally, we find that the O3 ±mortality effect estimate increases in size and statistical significance when the nonlinearity and the humidity

interaction of the temperature±health effect association are incorporated into the model weather specification. We recommend that a minimization of the

intercorrelations of model coefficients be considered ( along with other critical factors such as goodness of fit, autocorrelation, and overdispersion ) when

specifying such a model, especially when individual coefficients are to be interpreted for risk estimation. Journal of Exposure Analysis and Environmental

Epidemiology ( 2001) 11.
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Introduction

Observational epidemiological studies provide especially

relevant evidence as to whether ambient environmental

factors, such as air pollution, can adversely affect the

general public. This is because these studies consider the

`̀ real -world'' experiences of human populations as they

are exposed to pollution in natural settings. Such

observational epidemiological studies are termed `̀ ecolog-

ical'' if they consider aggregate data for large groups of

people (e.g., group counts of deaths per day or per year),

rather than individuals. These studies often follow

populations of people in a defined geographical area

(e.g., a city) as they undergo varying everyday exposures

to pollution over time, or from one place to another, and

then statistically evaluate the variations in the total number

of adverse health impacts that occur in these populations

(e.g., city-wide respiratory hospital admissions counts)

when higher (versus lower) concentrations of pollution are

experienced.

In the case of ozone (O3) air pollution, many, but not

all, recent observational epidemiologic studies have

yielded significant associations between variations in

daily ambient concentrations of this pollutant and a wide

range of adverse health outcomes. This paper primarily

focuses on a quantitative evaluation of some past

epidemiological studies that have assessed the short - term

association of O3 with mortality, and investigates one

possible reason for variations in their O3 effect estimate,

i.e., differences in their approaches to the modeling of

weather influences on mortality. Thus, this paper

considers many of the recent observational epidemiolog-

ical studies that have evaluated the possible effects of O3

air pollution on human mortality to quantitatively

evaluate the possible role of modeling choices regarding

weather specification in the variability of past evaluations

of O3 and mortality. In addition, an illustrative example

for Detroit, MI presents how various weather specifica-

tions affect the model intercorrelations and the O3 effect

estimate for mortality in that city. Collectively, these

evaluations aim to give new insights into the extent to

which O3±mortality effect estimates can be influenced
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by the choice of weather specification in time-series

models.

Methodological issues in O3 time-series modeling

The studies considered here are longitudinal time-series

statistical analyses, or those studies that follow a single

population over time. Although being semiecological in

nature, as they do not estimate individual exposures for each

person in the population, such time-series analyses present

numerous statistical advantages over other types of studies.

These include the fact that, by design, they obviate the need

to control for individual- level confounding factors (e.g.,

education level, income, smoking, etc. in the population)

that can confound other study designs (such as cross-

sectional studies, which compare effects across different

populations). This is the case because such intrinsic

population characteristics are relatively constant from

day-to-day. Thus, the population acts as its own `̀ control''

in such a time-series model, since a single population's

health effects incidence on higher pollution days are being

compared to that same population's incidence on lower

pollution days.

Epidemiological studies also do not share the practical

and ethical limitations of controlled human exposure

studies, which are usually not able to study the most

sensitive populations (e.g., those with severe preexisting

disease) and must consider pollution concentrations that are

expected to only result in relatively mild responses. Instead,

time-series epidemiological studies consider a community's

entire population, and the entire spectrum of ambient

exposures experienced by that population. Thus, in addition

to being very relevant to the general public, epidemiological

studies are also extremely useful in capturing the most

serious effects among the most sensitive members of the

general population, and can have great statistical power

when they consider extremely large populations (e.g., entire

metropolitan areas ) over multiple years.

Despite the above-noted strengths of time-series

observational epidemiology, the application of such meth-

ods also present important statistical challenges of their

own, as discussed in detail by Thurston and Kinney (1995).

In particular, shared long-term cycles in the health outcome

(e.g., mortality ) and the pollutants being analyzed can, if

not adequately addressed, cause misleading associations

(e.g., due to shared winter to summer seasonal trends), and

yield biased pollutant risk estimates. These cycles can also

cause statistical autocorrelation and/or overdispersion in the

model residuals that, if unaddressed, can bias pollutant

significance tests. This problem is especially relevant to the

time-series analysis of year-round and multiyear records of

daily population counts of human morbidity and mortality,

as these health outcome daily series usually exhibit strong

seasonal variations over time. Moreover, it is difficult for

such correlation-based models to separate the individual

influences of other environmental factors that covary over

time with the pollutant of interest in the study locale,

potentially biasing the pollutant effect size estimate

provided by such models. For example, O3 is usually

moderately to strongly associated with ambient temperature,

representing a potential confounder to the elicitation of O3

associations with morbidity and premature mortality. Thus,

if not appropriately addressed, the influence of seasonal

variations and temperature impacts on the incidence of

health outcomes can confound such time-series models'

evaluation of O3's effects on human health.

Fortunately, a variety of time-series statistical modeling

options are now available to analyze the short -wave

`̀ signal'' of interest separately from the long-wave `̀ noise''

superimposed on day-to-day variations, including: Fourier

techniques ( i.e., fitting sine/cosine waves to the data), high

pass prefiltering, autoregression methods, the fitting of a

smooth of mortality over time, or the use of time-dependent

(e.g., monthly) dummy variables in regressions. The model

results do not seem to be especially sensitive to which of

these approaches is employed (e.g., see Lipfert, 1994;

Kinney et al., 1995), but one of these methods needs to be

applied to avoid confounding by seasonality.

Similarly, how the known acute effects of temperature

extremes on human morbidity and mortality are handled in a

model can also affect the pollution±health effects associ-

ation estimates. This is especially true for O3, which tends to

experience peak concentrations on high temperature days,

when many O3 precursors are emitted at higher rates (e.g.,

via the greater vaporization of hydrocarbons) and their

conversion to O3 is most rapid. Also, as noted in the U.S.

EPA Ozone Criteria Document: `̀ Ambient air temperature

often exhibits a moderate to high correlation over time with

O3 in acute epidemiology studies due, in part, to the

dependence of O3 formation rate on light intensity. Among

the studies reviewed. . ., correlations ranging from 0.06 to

0.90 (mean=0.51) have been reported'' (U.S. EPA, 1996).

Some older O3±mortality studies ignored temperature,

which may have led to an overestimation of O3 effects.

Conversely, modeling the associations between temperature

and mortality as a linear relationship can cause the

underestimation of the O3 effect, due to the serial

intercorrelation of O3 and temperature over time.

Although temperature and O3 are moderately to highly

correlated over time, differences in their respective

relationships with health outcomes allows their effects to

be disentangled via advanced statistical methods. Whereas

the temperature±health effect dose±response relationship

is `̀ U-shaped,'' with increased adverse effects at either

extremely high or extremely low temperatures, the O3±

health effects relationship is more linear, with adverse O3

effects increasing as concentration increases. There is also
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an interaction between the effects of temperature and

relative humidity (RH) on high temperature days, which

also needs to be incorporated. Thus, if these factors are

specified in the model, their respective effect coefficients

(e.g., that between the `̀ U-shaped'' temperature specifi-

cation and the monotonic O3 term) should be less

intercorrelated than their raw variables, allowing these

model terms to be better discriminated ( i.e., having lower

intercorrelations between their coefficients ), despite O3

and raw temperature's moderate to high linear intercorre-

lation. The effect of weather specification on the O3 effect

estimate is an as yet undefined parameter, and was the

focus of this work.

Another concern that has been raised regarding aggregate

time-series analyses is that the collection of individual

exposure data in such large populations is not practical, so

central site monitor concentration data (either from a single

site, or from the average of multiple sites) are usually used

to provide indices of day-to-day variations in population

exposures. However, the use of outdoor central site air

pollution monitoring data as an index of average population

exposure is apparently not as large a problem as once

thought. Recent work by Mage and Buckley (1995) and

Mage et al. (1999) indicates that, although individual

exposures are not always well characterized by a central site

monitor's data, such central site data are highly correlated

with the average of individual exposures in a population,

which is what is required for the purposes of time-series

analyses of aggregate population counts of health effects.

Moreover, because the purpose of such time-series

epidemiologic analyses is usually to help set ambient

standards that will ultimately be monitored at a central site,

the use of central site data in the original epidemiological

studies simplifies the standard setting process ( i.e., thereby

avoiding any extrapolation between individual exposures

measured during research, and central site monitor concen-

trations to be employed in standards-compliance monitor-

ing). Thus, any differences between personal and central

site O3 concentrations should not usually present a serious

problem in such time-series studies of O3 health effects as

those considered here.

However, random errors that greatly reduce the

correlation between measured and actual exposure (e.g.,

due to poor spatial correlations of a pollutant ) will tend to

reduce the significance of the pollutant effect and bias

pollutant effect regression estimates toward zero (e.g., see

Caroll et al., 1995). This may, in turn, reduce such time-

series methods' ability to detect the effects of some

pollutants. The use of multiple-site averages for a city or

region in such aggregate epidemiological studies should

reduce this problem, and the problem is less severe for

more spatially correlated pollutants (e.g., see Ito et al.,

1995, 2001). In the case of O3 air pollution, which is

highly correlated spatially across a metropolitan area,

the chief concern is actually that the pollutant may

not permeate equally in all buildings, for example, in

air-conditioned versus non±air-conditioned buildings

(Wechsler et al., 1989). In warm climates (e.g., the U.S.

Southwest ), the percentage of homes with air conditioning

can exceed 90% (U.S. Bureau of the Census, 1983), which

may reduce the ability of reactive pollutants like O3 to

reach residents for much of the day. This may, in turn,

diminish the overall population adverse health implications

of outdoor O3 air pollution in those cities versus cities

without extensive air conditioning. As a result, it is likely

that, in cities with warmer climes that have extensive use

of air conditioning (e.g., Houston, TX), the estimated O3

health effect on exposed individuals ( i.e., the RR per

amount of pollution) may be underestimated compared to

effects estimated in communities having cooler climates,

and more limited use of air conditioning. The influence of

such potential effect modifiers needs further investigation,

but requires multicity analyses that is beyond the scope of

the research presented here.

Ozone and premature mortality

Limitations of Early Studies

Whereas recent studies of mortality and acute O3 exposures

have usually attempted to address potential confounders

such as seasonal, temperature, and other pollutants'

influences in their analyses, older studies of the possible

association of O3 with human mortality were usually flawed

in these regards. Unlike hospital admissions and ED visit

studies, where daily visits are usually stratified by cause,

most studies of air pollution and mortality have examined

only total daily counts. This is possibly because of a lack of

reliably recorded by-cause data, and also because the small

numbers of daily respiratory deaths limit the statistical

power of such studies to detect by-cause mortality effects,

even if present. Most studies published in the 1950s and

1960s considered total daily mortality in Los Angeles, CA.

Many of these early studies did not recognize and attempt to

address seasonality in the data series, including the

California Department of Public Health (1955) study,

which was also weakened by the qualitative treatment of

the air pollution data. Newer studies (especially those

conducted during the past decade) have usually better

addressed the various potential confounding factors noted

above ( to greater or lesser extents), but have still provided

somewhat varying results. As discussed further below, most

of those have addressed long-wave confounding satisfac-

torily, but not all have looked at the role of copollutants,

considered the same O3 averaging times (e.g., 1-h daily

maximum value vs. 8-h or 24-h average O3 values), or

modeled weather influences similarly, complicating com-

parisons among studies.
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Illustrative Example of Weather Specification Effects on

O3±Mortality Effect Estimates

Unlike the modeling of mortality±particulate matter (PM)

air pollution associations, which have been indicated to be

relatively insensitive to the weather±mortality modeling

approach (e.g., see Pope and Kalkstein, 1996; Samet et al.,

1997, 1998), the choice of time-series weather modeling

approach may have a large effect on the O3±mortality effect

estimate. This is because elevated O3 concentrations are

much more highly correlated with high temperatures than

PM mass (e.g., PM10), and temperature has its own adverse

effects on human health, especially when present in tandem

with high humidity conditions (e.g., see Ellis, 1972). Thus,

if both temperature and O3 are simultaneously entered into a

time-series as raw variables, they will compete with each

other for the same mortality variations, resulting in unstable

effect estimates.

However, despite the high correlation with one another,

the differing relationships of weather and O3 with

mortality, respectively, can be exploited to separate their

individual effects. As discussed previously, the relation-

ship between mortality and each of these two variables is

quite different, with mortality having a highly nonlinear

(U-shaped) relationship with temperature (higher daily

mortality at both hot or cold temperature extremes),

whereas O3 has a more linear relationship with daily

mortality. This is shown in Figure 1 for the case of

Detroit, MI, where both temperature and RH have a quite

strong nonlinear relationship with mortality, along with an

interaction between high temperature and high RH effects

on mortality. In contrast to the nonlinear weather±

mortality relationship, mortality in Detroit is shown in

Figure 2 to exhibit a more monotonic relationship with O3

concentration.

As an illustrative example of the potential problems that

can result from weather±O3 intercorrelations, we modeled

total daily mortality during the 1986±1990 period in Detroit

(Wayne County), MI. The basic model was a Poisson

generalized additive model (GAM) that accounted for

overdispersion and included seasonal controls, day of week

variables, and PM10 concentrations. As a semiparametric

modeling technique, GAM allows for nonlinear variables to

be included in regression analyses (Hastie and Tibshirani,

1990). Here, we applied a GAM using local weighted

regression smoothing techniques, LOESS (Cleveland,

1979) to fit the long-wave mortality trends with a span

that provided a smoothing periodicity of 30 days, which was

selected to minimize overdispersion in the mortality series,

while at the same time minimizing the induction of negative

autocorrelations in model residuals.

To the basic GAM model, several reasonable alter-

native weather model specifications were added, along

with daily maximum hourly O3. These different weather

models have differing implications to the O3 RR effect

estimate. As seen in Table 1, the simplest weather model

(which assumes a linear relationship between heat and

total daily mortality ) yields the lowest O3 effect estimate

and (especially) the lowest t -statistic, and the highest

intercorrelation with the O3 coefficient. In this table, the

risk estimates are presented as the percent excess risk

(ER) per 100-ppb increment in 1-h maximum O3, where

ER=(RRÿ1)�100. One reason for the low significance

level for O3 in this first model may be an inflated standard
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error of the coefficient, which is a common problem when

correlated variables are entered into a regression simulta-

neously. In Model 2, as the weather term is specified to

model the nonlinear nature of the temperature±mortality

relationship, the O3 effect estimate, and (most notably) its

significance, is increased, as the intercorrelation of the

betas decrease ( to r�=ÿ0.23).

In Model 3, it is seen that the specification of a dewpoint

locally estimated smooth (LOESS) term (span=0.5) gives

slight further improvement vis -aÁ -vis its intercorrelation

with O3 over the use of raw RH. This is likely because a

very high dewpoint day (e.g., 698F dewpoint ) can result

from either a comfortable 69-degree temperature on a rainy

day (with RH=100%), or from a very uncomfortable 90-

degree plus day with a high RH for such a hot day (e.g.,

RH>50%). Thus, a given dewpoint can result from very

different types of days, and the use of dewpoint therefore

might not uniquely identify the high temperature±humidity

days in Model 3 as uniquely as does the weather

specification in Model 4. The temperature and dewpoint

LOESS model (span=0.5) also retains a moderate inter-

collinearity problem with O3 in the mortality model

(r=ÿ0.22).

Finally, the weather model is specified to incorporate

both the temperature nonlinearity and the temperature±

RH interdependence of the hot weather±mortality rela-

tionship (Model 4), as depicted in Figure 1. The weather

term now fits not only the nonlinearity of the temper-

ature±mortality association, but also the greatly height-

ened impacts on days having both high RH and high

temperature (LOESS span=0.2). This 3-D weather

surface is now also less intercorrelated with the more

linear O3±mortality association (r=ÿ0.16) than other

models considered, and a larger and more significant O3

association is indicated by this model (ER=13.1% per

100 ppb O3, t -statistic=4.23). It is also notable, by way

of comparison, that this Model 4 estimate of O3±mortality

ER is somewhat smaller than the effect estimate derived

when no weather is included, a model that avoids the O3±

temperature intercorrelation altogether (O3 ER=13.7%,

t=4.80).

Model fit was also examined using the both the Akaike

Information Criteria (AIC) (Akaike, 1974) and the r-

squared measure of model fit ( the latter derived using a

similarly specified log-linear OLS model ). The AIC values

indicated that the overall model fit with the various

specifications were similar, with the smallest AIC value

actually being found for the simple linear model specifica-

tion ( i.e., Model 1). This result is likely due to the fact that,

given reasonably similar overall fits of mortality, the Akaike

Criterion's penalty for added degrees of freedom caused the

more complex weather models to get weaker AIC values.

The r-squared values (which measure overall goodness of

fit without a penalty for added degrees of freedom) also

indicated similar fits across specifications (ranging from

19.8% for the linear weather model, up to 20.9% for a

nonlinear temperature model ), indicating the simple linear

model to now be indicated as the worst fitting model. In

addition, in this case, the model with the lowest ( i.e., best )

AIC, also gave the least independent estimate of the

individual model coefficients, due to high intercorrelations

of the temperature and O3 coefficients in Model 1. Overall,

the goodness of fit did not vary appreciably across models,

so the `̀ best fit'' conclusions varied depending on the

measure of fit examined.

We also investigated the influence of co-pollutant lag

choice on the ozone effect estimate. In the Table 1 models,

we used the maximum individual effect lag for each

pollutant in the combined pollutant regressions ( i.e., 1-day

for both in this city), but there was moderate intercorrelation

found between the pollutant coefficients in these models

(r=ÿ0.45). We therefore also applied these four models for

the case where the PM10 was for lag 0, keeping O3 at lag 1.

The trend across models was similar ( i.e., weaker ozone

effects in Model 1 than in other models ), but there was a

lowering of the intercorrelation between the pollutant

Table 1. Ozone excess risk ( ER) estimates, their t - ratios, and the correlation of the O3 ER beta estimates for models with different weather model

specifications in Detroit, MI ( Wayne County ) during 1986±1990 (n = 1121), after controlling for season, day of week, and PM10.

Weather model % ER per

100 ppb O3

O3 coefficient

t - ratioa

Correlation of

betas between O3

and hot weather term

Model 1. Piecewise linear temperature terms for hot

( same- day > =608F) and cold ( 2 -day lag <608F) effects

7.4 1.95 ÿ0.56

Model 2. Separate LOESS smooths of temperature and RH

for both same -day lag ( for heat ) and 2 - day lag ( for cold ) effects

10.6 2.87 ÿ0.23

Model 3. Separate LOESS smooths of temperature and dew

point for both same -day lag ( for heat ) and 2 - day lag ( for cold ) effects

10.7 3.06 ÿ0.22

Model 4. LOESS smooth interaction of temperature and humidity

for same day lag and 2- day lag effects

13.1 4.23 ÿ0.16

aAfter upward adjustment of coefficient standard error for constant overdispersion.
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coefficients, and a lowering of the ozone effect estimate and

its significance ( to O3 ER=8.1%, t=2.75 for Model 4). This

indicated that co-pollutant intercorrelations, though not as

high as with weather, also affected pollutant effect estimates

when the two pollutants were entered with the same lag.

Although not the focus of this investigation, it is

interesting to note that the ER effect estimate for 100 �g/

m3 PM10 in Model 1 (ER=6.5%, t=1.85) was not nearly so

correlated with the weather term (r=ÿ0.13) as was O3

(r=ÿ0.56) in this model. This is consistent with earlier

analyses of this question for PM, as discussed previously. In

Model 4, the PM effect estimate (not shown in Table 1)

rises to only ER=7.9% ( t=2.16). Thus, it seems clear, in

this city, that the O3 effect estimate is much more sensitive

to the choice of weather specification than is the PM10 effect

estimate.

Weather Specification Influences on Some Published

O3±Mortality Effect Estimates

We also have sought to evaluate whether the apparent

influence of a model's weather ( i.e., temperature and RH)

specification on the resultant mortality effects estimate for

O3 is responsible for much of the variability in the

published values of the O3 RR. To test this, we present the

results from the various recently published O3±mortality

studies in Figure 3 as a function of the weather modeling

approach ( in terms of effects per 100 ppb of daily

maximum 1-h average O3 concentration). All of these

results are for a model specification where a PM

concentration index has also been included, to reduce the

chances that the reported O3 RR incorporates the effects of

another copollutant. A concentration of 100 ppb O3 as a

daily 1-h maximum was chosen for these calculations to

provide consistency across all study results, and because

100 ppb is on the order of the difference between the

annual average concentration and the daily maximum 1-h

maximum concentration experienced in most urban areas.

When the analysts used O3 data averaged over another

period (e.g., 8- or 24-h averages), this is noted in the

figure. Also, an adjustment was made to convert the

reported RR in terms of a 1-h maximum averaging period,

based on the ratio of the mean concentrations experienced

for each of the respective averaging times in that study

area. If this concentration information was unavailable

from a specific study, a conversion of 2.5 was used to

convert 24-h average RRs, and a conversion of 1.33 was

used to convert 8-h average RRs, based on past experience

(e.g., see Schwartz, 1997). Thus, Figure 3 presents relative

risks (RRs) for the various studies so that they are directly

intercomparable, and in terms that should be more

intuitively interpretable than other candidate pollution

increments (e.g., for the difference between the 25th and

the 75th quartiles ), because the 100-ppb RRs provide an

index of the increased risk associated with a typical high

O3 day versus an average day.

The results depicted in Figure 3 are consistent with the

hypothesis that the choice of temperature specification

employed in a total daily mortality time-series model can

have a substantial influence on the estimated O3 effect

size. As would be expected, those studies that employed a

linear temperature specification for year-round data ( left-

most group of studies ) had the lowest random effects

model pooled O3 RR estimate (pooled RR=1.026, 95%

CI: 1.016±1.036). To obtain this combined estimate, we

used a two-stage random-effects model approach, as
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suggested by Dersimonian and Laird (1986) to take into

account the among-studies variance. However, as the O3

models were specified in some studies ( i.e., the center

group of studies in Figure 3) to account for differing hot

and cold extreme effects (e.g., by adding dummy variables

for extreme days), the overall O3 RR estimate increased

somewhat (pooled RR=1.033, 95% CI: 0.985±1.084),

although it is statistically nonsignificant in these studies.

Finally, in those studies ( to the right in Figure 3) in which

the nonlinear nature of temperature effects was more fully

addressed, statistically significant O3 RRs greater than 1.0

were consistently found, irrespective of the averaging time

employed (pooled RR=1.056, 95% CI: 1.032±1.081).

Thus, the method of weather specification was shown to

be an important factor affecting the O3±mortality effect

estimate, with the better ( i.e., more realistic) weather±

mortality models resulting in the largest O3 RR estimate.

Those studies that have incorporated nonlinear temper-

ature specifications are therefore seen to be of the most

interest in assessing the potential premature mortality

effects of O3.

As shown in Figure 3, the estimated RR associated with a

100-ppb increase in 1-h maximum O3 (which is roughly

equivalent to 75 ppb daily 8-h maximum, or 40 ppb 24-h

average O3) increases as the method of weather specifica-

tion is improved. When all 15 studies are considered (after

controlling for season, weather, day-of-week, and PM

copollutant effects), the combined analysis yielded an

overall 100-ppb effect size of RR=1.036 per 100-ppb

increase in daily 1-h maximum O3 (95% CI: 1.023±1.050).

A pooling of the seven studies with nonlinear temperature

terms (and simultaneously including a PM index term)

reveals that the overall RR=1.056 per 100-ppb increase in

daily 1-h maximum O3 (95% CI: 1.032±1.081), and that

the various RRs are not statistically different from each

other. Note, however, that none of these studies have yet

considered the likely interaction of temperature and percent

RH in enhancing the model's fit of weather's influence on

daily mortality (and making the weather specification less

like O3, further reducing intercorrelation between the

pollutant and weather terms in the model ). For example,

in the illustrative case of Detroit presented here, the ER

estimate was highest and most significant for the model that

included a weather specification that incorporated the

temperature±RH interaction. Thus, even those recent

models discussed in this paper that include nonlinear

temperature terms may yet be underestimating the acute

effects of O3 on premature mortality.

In Figure 4, the O3 RR results from the studies using

nonlinear fits of temperature are shown both for the `̀ O3-

alone'' model and for the same model with a PM air

pollution index also included. As indicated by these results,

the inclusion of the PM index tends to only very slightly

change the combined estimate of the size of the O3 RR.

Thus, the influence of a copollutant on the O3 effect estimate

is seen to be small in these studies.

The size of the premature mortality effects by O3

indicated by this synthesis is greater than that assumed in

most past assessments of O3±mortality effects, especially in

the case where the combined estimate from the nonlinear
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temperature specification models are considered. For

example, the recent U.S. EPA Regulatory Impact Analysis

used an O3±mortality effect estimate equivalent to

RR=1.029 for a 100-ppb increase in 1-h maximum O3

(U.S. EPA, 1997). This suggests that the U.S. EPA

estimates of the premature mortality benefits of implement-

ing the most recently promulgated O3 standard may have

been underestimated by as much as a factor of two.

Conclusions

Whereas older epidemiological studies of O3 and mortality

had severe limitations, especially regarding the way they

handled confounding by weather, newer studies have used

more complex weather specifications in their analyses, and

the O3±mortality relationship has been more clearly

identifiable. Among some of the newer aggregate popula-

tion time-series epidemiology studies examining the acute

effects of ambient O3, many have yielded significant

associations with premature mortality. Our examination in

this paper of an illustrative example for Detroit, MI

indicates that the choice of specification of the weather

terms can have an important effect on the O3 health effects

estimate, unlike the quite limited influences of weather

variables for time-series mortality analyses of PM10. The

nonlinear nature of the weather±health effects dose±

response relationship should, therefore, be carefully inves-

tigated and addressed when specifying a time-series model,

so as to avoid an inappropriate accounting for O3±mortality

associations. This is especially true with regard to the

nonlinearity of the heat±mortality relationship, the temper-

ature±RH interaction, and the potentially high intercorre-

lation of a hot temperature variable with O3. Indeed, when

these nonlinearities and interactions are considered in the

weather specification so as to avoid intercorrelation with the

more linear O3 association with health effects, it appears to

be an important determinant as to whether the O3

association can be distinctly discriminated by such

regression analyses.

We conclude from our illustrative Detroit, MI analysis

that, depending on the purpose of the analysis, optimizing a

model by the goodness of fit (e.g., the AIC) alone will not

necessarily yield the most useful model. Indeed, in this city,

the consideration of AIC alone would have pointed to

choosing the simplest weather model, but that model also

had the greatest intercorrelation with O3. This result was

concluded to be a product of the degrees of freedom

adjustment incorporated into the AIC, which penalizes more

complex models for the added degrees of freedom used. If

the objective of an analysis is solely to use the model to

predict total mortality, then the AIC is likely to be a very

important statistic for deciding between models. However,

if the aim of an analysis is to interpret the resulting

regression coefficients to derive individual variable's effect

estimates, such as for O3, then the intercorrelations of the

model coefficients should also be considered in choosing

the most useful model, as highly intercorrelated variables

(e.g., r� 0.5) included simultaneously in a multiple

regression model can greatly affect the estimation of their

respective coefficients. As noted by Snedecor and Cochran

(1980), `̀ the meaning of a regression coefficient depends

on the other x's in the model'' and `̀ it helps if the

investigator can find a set in which the intercorrelations

among the x's are small.''

The conclusion that the goodness of fit (e.g, minimum

AIC) should not be used as the sole criteria in selecting a

`̀ best'' model has been made before, notably by Cakmak et

al. (1998) regarding selection of the long-wave cycles to

remove from the outcome variable in a time-series analyses.

These authors found that overfiltering could result in the

inducement of undesirable negative autocorrelation in a

model. Therefore, the authors recommended three criteria in

selecting the degree of smoothing in the outcome variable:

`̀ removal of temporal cycles, minimizing autocorrelation

and optimizing goodness of fit.'' To these three criteria, we

now argue that the intercorrelation of the other `̀ independ-

ent'' model terms (e.g., weather) with the pollutant terms

should also be considered when choosing a model if the

intent of the analysis is to utilize the resulting pollutant

effect estimate coefficient(s ) for risk-assessment purposes.

Finally, our quantitative synthesis of some recent

epidemiological studies of O3 has provided combined

estimates of O3 effect sizes for premature mortality in the

studies considered here. For all of the total mortality±air

pollution time-series studies considered here, the combined

analysis RR=1.036 per 100-ppb increase in daily 1-h

maximum O3 (95% CI: 1.023±1.050), whereas the subset

of studies that were judged to have better modeled the

complex influences of weather yielded a combined estimate

of RR=1.056 per 100-ppb increase in daily 1-h maximum

O3 (95% CI: 1.032±1.081). Generally, we found that the

O3±mortality effect estimate was largely independent of the

PM mass±mortality association, and that the O3 effect

estimate increases in size and statistical significance when

the nonlinearity and the humidity interaction of the

temperature±health effect association are incorporated into

a model's weather specification. Thus, apparently unlike the

case for estimates of the mortality associations with PM

mass, the estimates derived for O3 seem to be sensitive to

the way that seasonality and weather are handled. Such

weather±pollutant intercorrelations should be considered

and minimized as much as possible during the model

development process. We hypothesize that this may well

also apply to other pollutants with largely temperature -

dependent formation mechanisms, such as secondary

aerosol components of the PM mass (e.g., sulfates and

acidic aerosols).
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